Cell fate determination factor DACH1 inhibits c-Jun-induced contact-independent growth.

نویسندگان

  • Kongming Wu
  • Manran Liu
  • Anping Li
  • Howard Donninger
  • Mahadev Rao
  • Xuanmao Jiao
  • Michael P Lisanti
  • Ales Cvekl
  • Michael Birrer
  • Richard G Pestell
چکیده

The cell fate determination factor DACH1 plays a key role in cellular differentiation in metazoans. DACH1 is engaged in multiple context-dependent complexes that activate or repress transcription. DACH1 can be recruited to DNA via the Six1/Eya bipartite transcription (DNA binding/coactivator) complex. c-Jun is a critical component of the activator protein (AP)-1 transcription factor complex and can promote contact-independent growth. Herein, DACH1 inhibited c-Jun-induced DNA synthesis and cellular proliferation. Excision of c-Jun with Cre recombinase, in c-jun(f1/f1) 3T3 cells, abrogated DACH1-mediated inhibition of DNA synthesis. c-Jun expression rescued DACH1-mediated inhibition of cellular proliferation. DACH1 inhibited induction of c-Jun by physiological stimuli and repressed c-jun target genes (cyclin A, beta-PAK, and stathmin). DACH1 bound c-Jun and inhibited AP-1 transcriptional activity. c-jun and c-fos were transcriptionally repressed by DACH1, requiring the conserved N-terminal (dac and ski/sno [DS]) domain. c-fos transcriptional repression by DACH1 requires the SRF site of the c-fos promoter. DACH1 inhibited c-Jun transactivation through the delta domain of c-Jun. DACH1 coprecipitated the histone deacetylase proteins (HDAC1, HDAC2, and NCoR), providing a mechanism by which DACH1 represses c-Jun activity through the conserved delta domain. An oncogenic v-Jun deleted of the delta domain was resistant to DACH1 repression. Collectively, these studies demonstrate a novel mechanism by which DACH1 blocks c-Jun-mediated contact-independent growth through repressing the c-Jun delta domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cell fate determination factor dachshund inhibits androgen receptor signaling and prostate cancer cellular growth.

Initially isolated as the dominant suppressor of the mutant epidermal growth factor receptor (ellipse), the Dachshund gene plays a key role in metazoan development regulating the Retinal Determination Gene Network. Herein, the DACH1 gene was expressed in normal prostate epithelial cells with reduced expression in human prostate cancer. DACH1 inhibited prostate cancer cellular DNA synthesis, gro...

متن کامل

Acetylation of the Cell-Fate Factor Dachshund Determines p53 Binding and Signaling Modules in Breast Cancer

Breast cancer is a leading form of cancer in the world. The Drosophila Dac gene was cloned as an inhibitor of the hyperactive epidermal growth factor (EGFR), ellipse. Herein, endogenous DACH1 co-localized with p53 in a nuclear, extranucleolar compartment and bound to p53 in human breast cancer cell lines, p53 and DACH1 bound common genes in Chip-Seq. Full inhibition of breast cancer contact-ind...

متن کامل

Dachshund inhibits oncogene-induced breast cancer cellular migration and invasion through suppression of interleukin-8.

Oncogene-mediated signaling to the host environment induces a subset of cytokines and chemokines. The Drosophila Dac gene promotes migration of the morphogenetic furrow during eye development. Expression of the cell-fate determination factor Dachshund (DACH1) was lost in poor prognosis invasive breast cancer. Mouse embryo fibroblasts derived from Dach1(-/-) mice demonstrated endogenous Dach1 co...

متن کامل

Cell fate determination factor Dachshund reprograms breast cancer stem cell function.

The cell fate determination factor Dachshund was cloned as a dominant inhibitor of the hyperactive epidermal growth factor receptor ellipse. The expression of Dachshund is lost in human breast cancer associated with poor prognosis. Breast tumor-initiating cells (TIC) may contribute to tumor progression and therapy resistance. Here, endogenous DACH1 was reduced in breast cancer cell lines with h...

متن کامل

Cell fate factor DACH1 represses YB-1-mediated oncogenic transcription and translation.

The epithelial-mesenchymal transition (EMT) enhances cellular invasiveness and confers tumor cells with cancer stem cell-like characteristics, through transcriptional and translational mechanisms. The mechanisms maintaining transcriptional and translational repression of EMT and cellular invasion are poorly understood. Herein, the cell fate determination factor Dachshund (DACH1), suppressed EMT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2007